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Abstract

In this chapter, we provide a review of the knowledge
discovery process, including data handling, data mining
methods and software, and current research activities. The
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introduction defines and provides a general background to
data mining knowledge discovery in databases, following
by an outline of the entire process in the second part.
The third part presents data handling issues, including
databases and preparation of the data for analysis. The
fourth part, as the core of the chapter, describes popu-
lar data mining methods, separated as supervised versus
unsupervised learning. Supervised learning methods are
described in the context of both regression and classifi-
cation, beginning with the simplest case of linear models,
then presenting more complex modeling with trees, neural
networks, and support vector machines, and concluding
with some methods only for classification. Unsupervised
learning methods are described under two categories: as-
sociation rules and clustering. The fifth part presents past
and current research projects, involving both industrial
and business applications. Finally, the last part provides a
brief discussion on remaining problems and future trends.

Keywords
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Data mining (DM) is the process of exploration and analysis,
by automatic or semiautomatic means, of large quantities of
data to discover meaningful patterns and rules [1]. Statistical
DM is exploratory data analysis with little or no human
interaction using computationally feasible techniques, i.e.,
the attempt to find unknown interesting structure [2]. Knowl-
edge discovery in databases (KDD) is a multidisciplinary
research field for nontrivial extraction of implicit, previously
unknown, and potentially useful knowledge from data [3].
Although some treat DM and KDD equivalently, they can
be distinguished as follows. The KDD process employs DM
methods (algorithms) to extract knowledge according to the
specifications of measures and thresholds, using a database
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along with any necessary preprocessing or transformations.
DM is a step in the KDD process consisting of particular
algorithms (methods) that, under some acceptable objective,
produce particular patterns or knowledge over the data. The
two primary fields that develop DM methods are statistics
and computer science. Statisticians support DM by mathe-
matical theory and statistical methods while computer scien-
tists develop computational algorithms and relevant software
[4]. Prerequisites for DM include: (1) advanced computer
technology (large CPU, parallel architecture, etc.) to allow
fast access to large quantities of data and enable computa-
tionally intensive algorithms and statistical methods and (2)
knowledge of the business or subject matter to formulate
the important business questions and interpret the discovered
knowledge.

With competition increasing, DM and KDD have become
critical for companies to retain customers and ensure prof-
itable growth. Although most companies are able to collect
vast amounts of business data, they are often unable to
leverage this data effectively to gain new knowledge and
insights. DM is the process of applying sophisticated ana-
lytical and computational techniques to discover exploitable
patterns in complex data. In many cases, the process of DM
results in actionable knowledge and insights. Examples of
DM applications include fraud detection, risk assessment,
customer relationship management, cross-selling, insurance,
banking, retail, etc.

While many of these applications involve customer rela-
tionship management in the service industry, a potentially
fruitful area is performance improvement and cost reduc-
tion through DM in industrial and manufacturing systems.
For example, in the fast-growing and highly competitive
electronics industry, total revenue worldwide in 2003 was
estimated to be $900 billion, and the growth rate is estimated
at 8% per year (www.selectron.com). However, economies of
scale, purchasing power, and global competition are making
the business such that one must either be a big player or
serve a niche market. Today, extremely short life cycles
and constantly declining prices are pressuring the electronics
industry to manufacture their products with high quality, high
yield, and low production cost.

To be successful, industry will require improvements at
all phases of manufacturing. Figure 38.1 illustrates the three
primary phases: design, ramp-up, and production. In the
production phase, maintenance of a high-performance level
via improved system diagnosis is needed. In the ramp-up
phase, reduction in new product development time is sought
by achieving the required performance as quickly as possible.
Market demands have been forcing reduced development
time for new product and production system design. For
example, in the computer industry, a product’s life cycle has
been shortened to 2–3 years recently, compared to a life
cycle of 3–5 years a few years ago. As a result, there are a
number of new concepts in the area of production systems,
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Fig. 38.1 Manufacturing system development phases. KPCs key prod-
uct characteristics, KCCs key control characteristics

such as flexible and reconfigurable manufacturing systems.
Thus, in the design phase, improved system performance
integrated at both the ramp-up and production phases is
desired. Some of the most critical factors and barriers in the
competitive development of modern manufacturing systems
lie in the largely uncharted area of predicting system perfor-
mance during the design phase [5, 6]. Consequently, current
systems necessitate that a large number of design/engineering
changes be made after the system has been designed.

At all phases, system performance depends on many
manufacturing process stages and hundreds or thousands of
variables whose interactions are not well understood. For
example, in the multistage printed circuit board (PCB)
industry, the stages include process operations such as
paste printing, chip placement, and wave soldering, and
also include test operations such as optical inspection, vision
inspection, and functional test. Due to advancements in
information technology, sophisticated software and hardware
technologies are available to record and process huge
amounts of daily data in these process and testing stages. This
makes it possible to extract important and useful information
to improve process and product performance through DM
and quality improvement technologies.

38.1 The KDD Process

The KDD process consists of four main steps:

1. Determination of business objectives
2. Data preparation

(a) Create target datasets
(b) Data quality, cleaning, and preprocessing
(c) Data reduction and projection

http://www.selectron.com
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3. Data mining

(a) Identify DM tasks
(b) Apply DM tools

4. Consolidation and application
(a) Consolidate discovered knowledge
(b) Implement in business decisions

As an example of formulating business objectives, consider
a telecommunications company. It is critically important to
identify those customer traits that retain profitable customers
and predict fraudulent behavior, credit risks, and customer
churn. This knowledge may be used to improve programs
in target marketing, marketing channel management, mi-
cromarketing, and cross-selling. Finally, continually updat-
ing this knowledge will enable the company to meet the
challenges of new product development effectively in the
future. Steps 2–4 are illustrated in Figs. 38.2, 38.3, and 38.4.
Approximately 20–25% of effort is spent on determining
business objectives, 50–60% of effort is spent on data prepa-
ration, 10–15% is spent on DM, and about 10% is spent on
consolidation/application.

38.2 Handling Data

The largest percentage effort of the KDD process is spent on
processing and preparing the data. In this section, common
forms of data storage and tools for accessing the data are
described, and the important issues in data preparation are
discussed.

38.2.1 Databases and DataWarehousing

A relational database system contains one or more objects
called tables. The data or information for the database are
stored in these tables. Tables are uniquely identified by their
names and are comprised of columns and rows. Columns
contain the column name, data type, and any other attributes
for the column. Rows contain the records or data for the
columns. The structured query language (SQL) is the com-
munication tool for relational database management systems.
SQL statements are used to perform tasks such as updating
data in a database, or retrieving data from a database. Some
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common relational database management systems that use
SQL are: Oracle, Sybase, Microsoft SQL Server, Access,
and Ingres. Standard SQL commands, such as select, insert,
update, delete, create, and drop, can be used to accomplish
almost everything that one needs to do with a database.

A data warehouse holds local databases assembled in
a central facility. A data cube is a multidimensional array
of data, where each dimension is a set of sets representing
domain content, such as time or geography. The dimensions
are scaled categorically, for example, region of country, state,
quarter of year, and week of quarter. The cells of the cube
contain aggregated measures (usually counts) of variables.
To explore the data cube, one can drill down, drill up, and
drill through. Drill down involves splitting an aggregation
into subsets, e.g., splitting region of country into states. Drill
up involves consolidation, i.e., aggregating subsets along a
dimension. Drill through involves subsets crossing multiple
sets, e.g., the user might investigate statistics within a state
subset by time. Other databases and tools include object-
oriented databases, transactional databases, time series and
spatial databases, online analytical processing (OLAP), mul-
tidimensional OLAP (MOLAP), and relational OLAP using
extended SQL (ROLAP). See Chap. 2 of Han and Kamber
[7] for more details.

38.2.2 Data Preparation

The purpose of this step in the KDD process is to identify
data quality problems, sources of noise, data redundancy,
missing data, and outliers. Data quality problems can involve
inconsistency with external datasets, uneven quality (e.g., if
a respondent fakes an answer), and biased opportunistically
collected data. Possible sources of noise include faulty data
collection instruments (e.g., sensors), transmission errors
(e.g., intermittent errors from satellite or Internet transmis-
sions), data entry errors, technology limitations errors, mis-
used naming conventions (e.g., using the same names for
different meanings), and incorrect classification.

Redundant data exists when the same variables have dif-
ferent names in different databases, when a raw variable
in one database is a derived variable in another, and when
changes in a variable over time are not reflected in the
database. These irrelevant variables impede the speed of
the KDD process because dimension reduction is needed to
eliminate them. Missing data may be irrelevant if we can
extract useful knowledge without imputing the missing data.
In addition, most statistical methods for handling missing
data may fail for massive datasets, so new or modified
methods still need to be developed. In detecting outliers,
sophisticated methods like the Fisher information matrix or
convex hull peeling are available, but are too complex for
massive datasets. Although outliers may be easy to visualize

in low dimensions, high-dimensional outliers may not show
up in low-dimensional projections. Currently, clustering and
other statistical modeling are used.

The data preparation process involves three steps: data
cleaning, database sampling, and database reduction and
transformation. Data cleaning includes removal of dupli-
cate variables, imputation of missing values, identification
and correction of data inconsistencies, identification and
updating of stale data, and creating a unique record (case)
identification (ID). Via database sampling, the KDD process
selects appropriate parts of the databases to be examined.
For this to work, the data must satisfy certain conditions
(e.g., no systematic biases). The sampling process can be
expensive if the data have been stored in a database system
such that it is difficult to sample the data the way you
want and many operations need to be executed to obtain
the targeted data. One must balance a trade-off between
the costs of the sampling process and the mining process.
Finally, database reduction is used for data cube aggregation,
dimension reduction, elimination of irrelevant and redun-
dant attributes, data compression, and encoding mechanisms
via quantizations, wavelet transformation, principle compo-
nents, etc.

38.3 Data Mining (DM)Models
and Algorithms

The DM process is illustrated in Fig. 38.5. In this process,
one will start by choosing an appropriate class of models.
To fit the best model, one needs to split the sample data
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into two parts: the training data and the testing data. The
training data will be used to fit the model and the testing
data is used to refine and tune the fitted model. After the final
model is obtained, it is recommended to use an independent
dataset to evaluate the goodness of the final model, such
as comparing the prediction error to the accuracy require-
ment. (If independent data are not available, one can use the
cross-validation method to compute prediction error.) If the
accuracy requirement is not satisfied, then one must revisit
earlier steps to reconsider other classes of models or collect
additional data.

Before implementing any sophisticated DMmethods, data
description and visualization are used for initial exploration.
Tools include descriptive statistical measures for central ten-
dency/location, dispersion/spread, and distributional shape
and symmetry; class characterizations and comparisons
using analytical approaches, attribute relevance analysis, and
class discrimination and comparisons; and data visualization
using scatter-plot matrices, density plots, 3D stereoscopic
scatter plots, and parallel coordinate plots. Following this
initial step, DM methods take two forms: supervised versus
unsupervised learning. Supervised learning is described
as learning with a teacher, where the teacher provides
data with correct answers. For example, if we want to
classify online shoppers as buyers or nonbuyers using an
available set of variables, our data would include actual
instances of buyers and nonbuyers for training a DM
method. Unsupervised learning is described as learning
without a teacher. In this case, correct answers are not
available, and DM methods would search for patterns or
clusters of similarity that could later be linked to some
explanation.

38.3.1 Supervised Learning

In supervised learning, we have a set of input variables
(also known as predictors, independent variables, x) that are
measured or preset, and a set of output variables (also known
as responses, dependent variables, y) that are measured and
assumed to be influenced by the inputs. If the outputs are
continuous/quantitative, then we have a regression or predic-
tion problem. If the outputs are categorical/qualitative, then
we have a classification problem. First, a DM model/system
is established based on the collected input and output data.
Then, the established model is used to predict output val-
ues at new input values. The predicted values are denoted
by ŷ.

The DM perspective of learning with a teacher follows
these steps:

• Student presents an answer (ŷi given xi)
• Teacher provides the correct answer yi or an error ei for

the student’s answer

• The result is characterized by some loss function or lack-
of-fit criterion:LOF

(
y, ŷ

)

• The objective is to minimize the expected loss

Supervised learning includes the common engineering task
of function approximation, in which we assume that the
output is related to the input via some function f (x, ε), where
ε represents a random error, and seek to approximate f (·).

Below, we describe several supervised learning methods.
All can be applied to both the regression and classification
cases, except for those presented below under “Other Classi-
fication Methods.” We maintain the following notation. The
j-th input variable is denoted by xj (or random variable Xj)
and the corresponding boldface x (or X) denotes the vector of
p input variables (x1, x2, . . . , xp)T, where boldface xi denotes
the i-th sample point;N is the number of sample points, which
corresponds to the number of observations of the response
variable; the response variable is denoted by y (or random
variable Y), where yi denotes the i-th response observation.
For the regression case, the response y is quantitative, while
for the classification case, the response values are indices for
C classes (c = 1, . . . , C). An excellent reference for these
methods is Hastie et al. [8].

Linear and Additive Methods
In the regression case, the basic linear method is simply the
multiple linear regression model form

μ (x; β) = E [Y | X = x] = β0 +
M∑

m=1

βmbm (x) ,

where themodel terms bm(x) are prespecified functions of the
input variables, for example, a simple linear term bm(x) = xj
or a more complex interaction term bm (x) = xjx2k . The key is
that the model is linear in the parameters β. Textbooks that
cover linear regression are abundant (e.g., [9, 10]). In partic-
ular,Neter et al. [11] provides a good background on residual
analysis, model diagnostics, and model selection using best
subsets and stepwise methods. In model selection, insignif-
icant model terms are eliminated, thus the final model may
be a subset of the original prespecified model. An alternate
approach is to use a shrinkage method that employs a penalty
function to shrink estimated model parameters toward zero,
essentially reducing the influence of less important terms.
Two options are ridge regression [12], which uses the penalty
form

∑
β2
m, and the lasso [13], which uses the penalty form∑ | βm |.

In the classification case, linear methods generate linear
decision boundaries to separate the C classes. Although a
direct linear regression approach could be applied, it is known
not to work well. A better method is logistic regression
[14], which uses log-odds (or logit transformations) of the
posterior probabilities μc(x) = P(Y = c| X = x) for classes
c = 1, . . . , C − 1 in the form
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log
μc (x)
μC (x)

= log
P (Y = c|X = x)
P (Y = C|X = x)

= βc0 +
p∑

j=1

βcjxj,

where the C posterior probabilities μc(x) must sum to one.
The decision boundary between class c < C and class C is de-
fined by the hyperplane {x|βc0 + ∑

βcjxj = 0}, where the
log-odds are zero. Similarly, the decision boundary between
classes c �=C and d �=C, derived from the log-odds for classes
c and d, is defined by {x|βc0 + ∑

βcjxj = βd0 + ∑
βdjxj}. In

the binary case (C= 2), if we defineμ(x)= P(Y = 1|X= x),
then 1 − μ(x) = P(Y = 2| X = x). The logit transformation
is then defined as g(μ) = μ/(1 – μ).

Closely related to logistic regression is linear discrim-
inant analysis [15], which utilizes exactly the same linear
form for the log-odds ratio, and defines linear discriminant
functions δc(x), such that x is classified to class c if its
maximum discriminant is δc(x). The difference between the
two methods is how the parameters are estimated. Logistic
regression maximizes the conditional likelihood involving
the posterior probabilities P(Y = c| X) while linear discrimi-
nant analysis maximizes the full log-likelihood involving the
unconditional probabilities P(Y = c, X). More general forms
of discriminant analysis are discussed below under “Other
Classification Methods.”

Finally, it should be noted that the logistic regression
model is one form of generalized linear model (GLM) [16].
GLM forms convert what appear to be nonlinear models into
linear models, using tools such as transformations (e.g., logit)
or conditioning on nonlinear parameters. This then enables
the modeler to use traditional linear modeling analysis tech-
niques. However, real data often do not satisfy the restrictive
conditions of these models.

Rather than using prespecified model terms, as in a linear
model, a generalized additive model (GAM) [17] provides
a more flexible statistical method to enable modeling of
nonlinear patterns in each input dimension. In the regression
case, the basic GAM form is

μ (x) = β0 +
p∑

j=1

fj
(
xj
)
,

where the fj(·) are unspecified (smooth) univariate functions,
one for each input variable. The additive restriction
prohibits inclusion of any interaction terms. Each function
is fitted using a nonparametric regression modeling
method, such as running-line smoothers (e.g., lowess, [18]),
smoothing splines, or kernel smoothers [19–21]. In the
classification case, an additive logistic regression model
utilizes the logit transformation for classes c = 1, . . . , C – 1
as above

log
μc (x)
μC (x)

= log
P (Y = c|X = x)
P (Y = C|X = x)

= β0 +
p∑

j=1

fj
(
xj
)
,

where an additive model is used in place of the linear model.
However, even with the flexibility of nonparametric regres-
sion, GAMmay still be too restrictive. The following sections
describe methods that have essentially no assumptions on the
underlying model form.

Trees and RelatedMethods
One DM decision tree model is chi-square automatic inter-
action detection (CHAID) [22, 23], which builds nonbinary
trees using a chi-square test for the classification case and
an F-test for the regression case. The CHAID algorithm
first creates categorical input variables out of any continuous
inputs by dividing them into several categories with approxi-
mately the same number of observations. Next, input variable
categories that are not statistically different are combined,
while a Bonferroni p-value is calculated for those that are
statistically different. The best split is determined by the
smallest p-value. CHAID continues to select splits until the
smallest p-value is greater than a prespecified significance
level (α).

The popular classification and regression trees (CART)
[24] utilize recursive partitioning (binary splits), which
evolved from the work of Morgan and Sonquist [25]
and Fielding [26] on analyzing survey data. CARTs have
a forward stepwise procedure that adds model terms
and backward procedure for pruning. The model terms
partition the x-space into disjoint hyper-rectangular regions
via indicator functions: b+(x; t) = 1{x > t}, b−(x;
t) = 1{x ≤ t}, where the split-point t defines the borders
between regions. The resulting model terms are:

fm (x) =
Lm∏

l=1

bSl,m
(
xv(l,m); tl,m

)
, (38.1)

where, Lm is the number of univariate indicator functions
multiplied in the m-th model term, xv(l,m) is the input variable
corresponding to the l-th indicator function in them-th model
term, tl,m is the split-point corresponding to xv(l,m), and sl,m
is +1 or −1 to indicate the direction of the partition. The
CART model form is then

f (x; β) = β0 +
M∑

m=1

βmfm (x) . (38.2)

The partitioning of the x-space does not keep the parent
model terms because they are redundant. For example, sup-
pose the current set has the model term:
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fa (x) = 1 {x3 > 7} · 1 {x4 ≤ 10} ,

and the forward stepwise algorithm chooses to add

fb (x) = fa (x) · 1 {x5 > 13}
= 1 {x3 > 7} · 1 {x4 ≤ 10} · 1 {x5 > 13}.

Then the model term fa(x) is dropped from the current set.
Thus, the recursive partitioning algorithm follows a binary
tree with the current set of model terms fm(x) consisting of the
M leaves of the tree, each of which corresponds to a different
region Rm.

In the regression case, CART minimizes the squared error
loss function,

LOF
(
f̂
)

=
N∑

i=1

[
yi − f̂ (xi)

]2
,

and the approximation is a piecewise constant function. In
the classification case, each region Rm is classified into one
of the C classes. Specifically, define the proportion of class c
observations in region Rm as

δ̂mc = 1

Nm

∑

xi∈Rm
1 {yi = c} ,

where Nm is the number of observations in the region Rm.
Then the observations in region Rm are classified into the
class c corresponding to the maximum proportion δ̂mc. The
algorithm is exactly the same as for regression, but with a dif-
ferent loss function. Appropriate choices include minimizing
the misclassification error (i.e., the number of misclassified

observations), the Gini index,
∑C

c=1δ̂mc

(
1 − δ̂mc

)
, or the

deviance
∑C

c=1δ̂mc log
(
δ̂mc

)
.

The exhaustive search algorithms for CART simultane-
ously conduct variable selection (x) and split-point selection
(t). To reduce computational effort, the fast algorithm for
classification trees [27] separates the two tasks. At each ex-
isting model term (leaf of the tree), F-statistics are calculated
for variable selection. Then linear discriminant analysis is
used to identify the split-point. A version for logistic and
Poisson regression was presented by Chaudhuri et al. [28].

The primary drawback of CART and FACT is a bias to-
ward selecting higher-order interaction terms due to the prop-
erty of keeping only the leaves of the tree. As a consequence,
these tree methods do not provide robust approximations
and can have poor prediction accuracy. Loh and Shih [29]
address this issue for FACT with a variant of their classi-
fication algorithm called QUEST that clusters classes into
superclasses before applying linear discriminant analysis.
For CART, Friedman et al. [30] introduced to the statistics
literature the concepts of boosting [31] and bagging [32]

from the machine learning literature. The bagging approach
generatesmany bootstrap samples, fits a tree to each, and then
uses their average prediction. In the framework of boosting,
a model term, called a base learner, is a small tree with only
L disjoint regions (L is selected by the user), call it B(x, a),
where a is the vector of tree coefficients. The boosting
algorithm begins by fitting a small treeB(x, a) to the data, and
the first approximation, f̂1 (x) , is then this first small tree. In
the m-th iteration, residuals are calculated, then a small tree
B(x, a) is fitted to the residuals and combined with the latest
approximation to create the m-th approximation:

f̂m (x; β0,β1, . . . ,βm) = f̂m−1

(
x; β0,β1,

. . . ,βm−1

)
+ βmB (x, a) ,

where a line search is used to solve for βm. The result-
ing boosted tree, called a multiple additive regression tree
(MART) [33], then consists of much lower-order interaction
terms. Friedman [34] presents stochastic gradient boosting,
with a variety of loss functions, in which a bootstrap-like
bagging procedure is included in the boosting algorithm.

Finally, for the regression case only,multivariate adaptive
regression splines (MARS) [35] evolved from CART as an
alternative to its piecewise constant approximation. Like
CART, MARS utilizes a forward stepwise algorithm to select
model terms followed by a backward procedure to prune
the model. A univariate version (appropriate for additive
relationships) was presented by Friedman and Silverman
[36]. The MARS approximation bends to model curvature at
knot locations, and one of the objectives of the forward step-
wise algorithm is to select appropriate knots. An important
difference from CART is that MARS maintains the parent
model terms, which are no longer redundant but are simply
lower-order terms.

MARS model terms have the same form as (38.1), except
the indicator functions are replaced with truncated linear
functions,

[
b+ (x; t) = [+ (x− t)]+, b− (x; t) = [− (x− t)] + ,

where [q]+ = max(0, q) and t is an univariate knot. The
search for new model terms can be restricted to interactions
of a maximum order (e.g., Lm ≤ 2 permits up through two-
factor interactions). The resulting MARS approximation,
following (38.2), is a continuous, piecewise linear
function. After selection of the model terms is completed,
smoothness to achieve a certain degree of continuity may be
applied.
Hastie et al. [8] demonstrate significant improvements in

accuracy using MART over CART. For the regression case,
comparisons between MART and MARS yield comparable
results [34]. Thus, the primary decision between these two
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methods is whether a piecewise constant approximation is
satisfactory or if a continuous, smooth approximation would
be preferred.

Artificial Neural Networks and Convolutional
Neural Networks
Artificial neural network (ANN) models have been very
popular for modeling a variety of physical relationships (for
a general introduction see Lippmann [37] or Haykin [38];
for statistical perspectives see White [39], Baron et al. [40],
Ripley [23], or Cheng and Titterington [41]). The original
motivation for ANNs comes from how learning strengthens
connections along neurons in the brain. Commonly, an ANN
model is represented by a diagram of nodes in various layers
with weighted connections between nodes in different lay-
ers (Fig. 38.6). At the input layer, the nodes are the input
variables and at the output layer, the nodes are the response
variable(s). In between, there is usually at least one hidden
layer which induces flexibility into the modeling. Activation
functions define transformations between layers (e.g., input
to hidden). Connections between nodes can feed back to
previous layers, but for supervised learning the typical ANN
is feedforward only with at least one hidden layer.

The general form of a feedforward ANN with one hidden
layer and activation functions b1(·) (input to hidden) and b2(·)
(hidden to output) is

fc (x;w, v, θ , γc) =
b2

[
H∑

h=1
whc · b1

(
p∑

j=1
vjhxj + θh

)

+ γc

]

,
(38.3)

where c = 1, . . . , C and C is the number of output variables,
p is the number of input variables, H is the number of
hidden nodes, the weights vjh link input nodes j to hidden

Inputs Hidden layer Outputs

X1

X2

X3

Y1

Y2

Y3

Z1

Z2

V11

V12

V21

V22

V31

V32

W11

W21

W12

W13

W22

W23

Fig. 38.6 Diagram of a typical artificial neural network for function
approximation. The input nodes correspond to the input variables, and
the output node(s) correspond to the output variable(s). The number of
hidden nodes in the hidden layer must be specified by the user

nodes h and whc link hidden nodes h to output nodes c,
and θh and γ c are constant terms called bias nodes (like
intercept terms). The number of coefficients to be estimated
is (p + 1)H + (H + 1)C, which is often larger than N. The
simplest activation function is a linear function b(z) = z,
which reduces the ANN model in (38.3) with one response
variable to a multiple linear regression equation. For more
flexibility, the recommended activation functions between
the input and hidden layer(s) are the S-shaped sigmoidal
functions or the bell-shaped radial basis functions. Com-
monly used sigmoidal functions are the logistic function

b(z) = 1

1 + e−z

and the hyperbolic tangent

b(z) = tanh(z) = 1 − e−2x

1 + e−2x
.

The most common radial basis function is the Gaussian
probability density function.

In the regression case, each node in the output layer repre-
sents a quantitative response variable. The output activation
function may be either a linear, sigmoidal, or radial basis
function. Using a logistic activation function from input to
hidden and from hidden to output, the ANN model in (38.3)
becomes

fc (x;w, v, θ , γc) =
[

1 + exp

(

−
H∑

h=1

whczh + γc

)]−1

,

where for each hidden node h

zh =
⎡

⎣1 + exp

⎛

⎝−
p∑

j=1

vjhxj + θh

⎞

⎠

⎤

⎦

−1

.

In the classification case with C classes, each class is
represented by a different node in the output layer. The rec-
ommended output activation function is the softmax function.
For output node c, this is defined as

b (z1, . . . , zc; c) = ezc

C∑

d=1
ezd

.

This produces output values between zero and one that sum
to one and, consequently, permits the output values to be in-
terpreted as posterior probabilities for a categorical response
variable.

Mathematically, an ANN model is a nonlinear statistical
model, and a nonlinear method must be used to estimate the
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Fig. 38.7 Diagram of a typical convolutional neural network

coefficients (weights vjh and whc, biases θh and γ c) of the
model. This estimation process is called network training.
Typically, the objective is to minimize the squared error lack-
of-fit criterion

LOF
(
f̂
)

=
C∑

c=1

N∑

i=1

[
yi − f̂c (xi)

]2
.

The most common method for training is backpropagation,
which is based on gradient descent. At each iteration, each
coefficient (say w) is adjusted according to its contribution to
the lack-of-fit

�w = α
∂ (LOF)

∂w
,

where the user-specified α controls the step size; see Rumel-
hart et al. [42] for more details. More efficient training
procedures are a subject of current ANN research.

Another major issue is the network architecture, defined
by the number of hidden nodes. If too many hidden nodes
are permitted, the ANN model will overfit the data. Many
model discrimination methods have been tested, but the
most reliable is validation of the model on a testing dataset
separate from the training dataset. Several ANN architec-
tures are fitted to the training dataset and then prediction
error is measured on the testing dataset. Although ANNs
are generally flexible enough to model anything, they are
computationally intensive, and a significant quantity of rep-
resentative data is required to both fit and validate the model.
From a statistical perspective, the primary drawback is the
overly large set of coefficients, none of which provide any
intuitive understanding for the underlying model structure.
In addition, since the nonlinear model form is not motivated
by the true model structure, too few training data points can
result in ANN approximations with extraneous nonlinearity.
However, given enough good data, ANNs can outperform
other modeling methods.

Convolutional neural network (CNN) [43] is a feedfor-
ward ANN network effective for pattern recognition and
feature extraction of image data. The CNN combines three
architectural ideas: local receptive fields, shared weights,
and spatial subsampling. As in Fig. 38.7, a typical CNN for
character recognition usually consists of an input layer, a
convolutional layer, a pooling layer, a fully connected layer,
and an output layer. Before feeding into the input plane,
images of characters are size normalized and centered. In the
convolutional layer, each neuron receives inputs from a set
of neurons located in a small neighborhood in the previous
layer. By using the same convolutional filter, the neurons
share the filter weights and the number of free parameters
in the convolutional layer is greatly reduced. With local re-
ceptive fields, neurons can extract elementary visual features
such as corners, end points, and oriented edges. These basic
features are then combined in higher layers to form useful
information. Each convolutional layer is followed by an ad-
ditional pooling layer which performs a local averaging and
a subsampling, reducing the resolution of the feature map, as
well as the sensitivity of the outputs to shifts and distortions.
The CNN extracts the topological and spatial features hidden
inside the image data through layer-by-layer convolution and
pooling operations. These features are finally fed into the
fully connected layer for classification or regression.

Support Vector Machines
Referring to the linear methods for classification described
earlier, the decision boundary between two classes is a hy-
perplane of the form {x|β0 + ∑

β jxj = 0}. The support
vectors are the points that are most critical to determining the
optimal decision boundary because they lie close to the points
belonging to the other class. With support vector machines
(SVM) [44], the linear decision boundary is generalized to
the more flexible form

f (x; β) = β0 +
M∑

m=1

βmgm (x) , (38.4)
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where the gm(x) are transformations of the input vector. The
decision boundary is then defined by {x| f (x;β) = 0}. To
solve for the optimal decision boundary, it turns out that we
do not need to specify the transformations gm(x), but instead
require only the kernel function [21, 45]:

K
(
x, x′) = 〈

[g1 (x) , . . . , gM (x)] ,
[
g1
(
x′) , . . . , gM

(
x′)]〉 .

Two popular kernel functions for SVM are polynomials of
degree d, K(x, x

′
) = (1 + 〈x, x′ 〉)d, and radial basis functions,

K(x, x
′
) = exp (−‖x − x

′ ‖2/c).
Given K(x, x′), we maximize the following Lagrangian

dual-objective function:

max
α1,...αN

N∑

i=1
αi − 1

2

N∑

i=1

N∑

i′=1
αiαi′yiyi′K

(
xi, x′

i

)

s.t. 0 ≤ αi ≤ γ , for i = 1, . . . , N and
N∑

i=1
αiyi = 0,

where γ is an SVM tuning parameter. The optimal solution
allows us to rewrite f (x; β) as

f (x; β) = β0 +
N∑

i=1

αiyiK (x, xi) ,

where β0 and α1, . . . , αN are determined by solving f (x;
β) = 0. The support vectors are those xi corresponding to
nonzero αi. A smaller SVM tuning parameter γ leads to more
support vectors and a smoother decision boundary. A testing
dataset may be used to determine the best value for γ .

The SVM extension to more than two classes solves
multiple two-class problems. SVM for regression utilizes the
model form in (38.4) and requires specification of a loss
function appropriate for a quantitative response [8, 46]. Two
possibilities are the ε-insensitive function

V∈(e) =
{
0 if |e| < ε,
|e| − ε otherwise,

which ignores errors smaller than ε, and the Huber [47]
function

VH(e) =
{
e2
/

2 if |e| ≤ 1.345,

1.345 |e| − e2/2 otherwise,

which is used in robust regression to reduce model sensitivity
to outliers.

Other ClassificationMethods
In this section, we briefly discuss some other concepts that
are applicable to DM classification problems. The basic

intuition behind a good classification method is derived from
the Bayes classifier, which utilizes the posterior distribution
P(Y = c| X = x). Specifically, if P(Y = c| X = x) is the
maximum over c = 1, . . . , C, then x would be classified to
class c.
Nearest neighbor (NN) [48] classifiers seek to estimate

the Bayes classifier directly without specification of any
model form. The k-NN classifier identifies the k closest
points to x (using Euclidean distance) as the neighborhood
about x, then estimates P(Y = c| X = x) with the fraction of
these k points that are of class c. As k increases, the decision
boundaries become smoother; however, the neighborhood
becomes less local (and less relevant) to x. This problem of
local representation is even worse in high dimensions, and
modifications to the distance measure are needed to create
a practical k-NN method for DM. For this purpose, Hastie
and Tibshirani [49] proposed the discriminant adaptive NN
distance measure to reshape the neighborhood adaptively at
a given x to capture the critical points to distinguish between
the classes.

As mentioned earlier, linear discriminant analysis may
be too restrictive in practice. Flexible discriminant analysis
replaces the linear decision boundaries with more flexible
regression models, such as GAMorMARS.Mixture discrim-
inant analysis relaxes the assumption that classes are more or
less spherical in shape by allowing a class to be represented
by multiple (spherical) clusters; see Hastie et al. [50] and
Ripley [23] for more details.
K-means clustering classification applies the K-means

clustering algorithm separately to the data for each of the C
classes. Each class cwill then be represented by K clusters of
points. Consequently, nonspherical classes may be modeled.
For a new input vector x, determine the closest cluster, then
assign x to the class associated with that cluster.
Genetic algorithms [51, 52] use processes such as ge-

netic combination, mutation, and natural selection in an
optimization based on the concepts of natural evolution. One
generation of models competes to pass on characteristics to
the next generation of models, until the best model is found.
Genetic algorithms are useful in guiding DM algorithms,
such as neural networks and decision trees [53].

38.3.2 Unsupervised Learning

Unsupervised learning, often called “learning without a
teacher,” has been widely used for exploratory analysis to
identify hidden patterns or groups in data. Unlike supervised
learning, it draws inferences from data without predefined
label information (i.e., response variables are not available).
Given a set of observations of a random variable X, the goal
of unsupervised learning is to directly infer properties of
the probability density P(X) without the label information.
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It may be noted that labeled samples are sometimes
significantly more expensive to collect (e.g., by asking
human experts to make judgments) than unlabeled samples.
Therefore, unsupervised learning has gained increasing
interest in a variety of applications when labels are difficult
to obtain, including biology, medicine, social science,
business marketing, etc. In this subsection, we introduce
two commonly used unsupervised learning techniques:
association rules and cluster analysis.

Association Rules
Association rule analysis [8] seeks to discover co-occurrence
between items in a collection and expresses such relation-
ships as association rules. It is most often applied as market
basket analysis, which deals with sales transactions to link
specific products for the analysis of purchasing behaviors of
customers. For example, the following rule:

{Diapers} → {Beer}

suggests co-occurrence exists between the sale of diapers and
beer. In other words, customers tend to purchase diapers and
beer together. Such information is helpful for retailers to in-
crease profit by optimizing their cross-promotion strategies,
catalog design, stocking shelves, and customer relationship
management.

In association analysis, a collection of one or more items
is termed an itemset. If an itemset contains k items, it is
called a k-itemset. For example, {Diapers, Beer, Eggs} is a
3-itemset. An important property of an itemset is its support
count σ , which is defined as the number of transactions that
contain this itemset. In the dataset below, the support count
for {Diapers, Beer, Eggs} is two because only transactions #3
and #4 contain these three items.

TID Items

#1 {Bread, Diapers}
#2 {Bread, Diapers, Milk, Eggs}
#3 {Diapers, Beer, Eggs}
#4 {Milk, Eggs, Beer, Diapers}
#5 {Bread, Milk, Diapers, Beer}

An association rule is expressed as A → B, where A is
called the antecedent and B is called the consequent. Given
an itemset, association rule can be generated by assigning
one or more items as the antecedent and one or more items
as the consequent. Notably, A and B are disjoint sets, i.e.,
A ∩ B = ∅. The importance of an association rule can be
measured in terms of its support and confidence. Support
(s) determines how frequently a rule appears among all
transactions and it is defined as the support count of the rule
over the total number of transactions N:

s (A → B) = σ (A ∪ B)

N

For example, support of rule {Diapers} → {Beer}is 3/5 and
support of rule {Diapers, Eggs} → {Beer} is 2/5. Notably, a
low support indicates the rule is uninteresting and customers
seldom buy these items together. Minimum support (minsup)
can be defined to eliminate uninteresting rules with s < min-
sup.
Confidence (c), on the other hand, represents how fre-

quently items in B appear in transactions that contain A. It
is defined as:

c (A → B) = σ (A ∪ B)

σ (A)

For example, the confidence of rule {Diapers} → {Beer} is
3/5, and the confidence of rule {Diapers, Eggs} → {Beer} is
2/3. A high confidence suggests it is likely for B to be present
in transactions that contain A. In other words, customers tend
to buy these items together and it is profitable to promote
them together.

Furthermore, lift can be calculated as the ratio of the
confidence over the expected confidence,

L (A → B) = c (A → B)

σ (B)/N

which, if greater than one, can be interpreted as the increased
prevalence of B when associated with A. For example, if σ

(B)/ N = 5%, then B is estimated to occur unconditionally
5% of the time. If c(A → B) = 40%, then given A occurs, B
is estimated to occur 40% of the time. This results in a lift of
8, implying that B is 8 times more likely to occur if A occurs.

Cluster Analysis
Cluster analysis, or clustering, seeks to segment a set of
objects into clusters, such that objects within a cluster are
more similar to each other than those assigned to different
clusters [54]. It is an unsupervised learning method since no
predefined label information is needed. The goal of cluster
analysis is to discover the underlying structure of the data to
obtain insight into the data distribution, arrange objects into
a natural hierarchy, or serve as a preprocessing step for other
algorithms. Notably, defining the similarity measure among
objects is critical for cluster analysis. Each object i can be
represented as a set of measurements, xip (p = 1, 2, . . .P),
where P is the number of variables (also called attributes).
Then, the pairwise distance between objects i and j is defined
as d

(
xi, xj

) = ∑P
p=1dp

(
xip, xjp

)
, and dp(xip, xjp) is the dissim-

ilarity between the values of the pth variable. For quantitative
variables, the common choice for dp(xip, xjp) is the squared
distance, i.e., dp(xip, xjp) = (xip − xjp)2. For nonquantitative
variables (e.g., ordinal or categorical variables), numerical
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coding approaches [55] or Hamming distance [56] can be
used. Below, we introduce some widely used algorithms for
cluster analysis.
K-means [57] is one of the most popular clustering

tools. It aims to partition the N objects into K clusters
C = {C1,C2, . . . ,CK}, so that the within-cluster distance
is minimized as follows:

argmin
C

K∑

k=1

∑

i∈Ck

∥
∥xi − μk

∥
∥2

where μk is the mean of objects in cluster Ck. The objective
function is minimized using an iterative refinement approach:
In the assignment step, the distance between each object
to the means of K clusters are calculated and the object
is assigned to the cluster with minimum distance. In the
update step, the new means of the objects in new clusters
are calculated. The initialization of cluster means can be
randomly selectedK objects. The assignment step and update
step are repeated until assignments are no longer changed.
Notably, K-means needs to specify the desired number of
clusters K, which can be selected by using prior knowledge
or by trying different values and looking for the one with
the most interpretable solution. Also, it is sensitive to the
initialization and may converge to a local optimum. Thus,
it is crucial to run the algorithm many times from multiple
random starting points. The best solution is selected with
the smallest value of the objective function. In addition, it is
difficult for K-means to handle noisy data and outliers. Many
algorithms, such as K-Medoids, were developed to improve
the robustness of K-means [58].
Density-based clustering (DBSCAN) [59] is rooted in the

idea that clusters are dense regions with objects packed to-
gether, separated by regions of lower density. It is associated
with two key parameters: the radius of a neighborhood with
respect to an object (ε) and theminimumnumber of objects to
form a dense region (MinPts). The ε-neighborhood of object
w is defined as Nε(w) : {v| d(w, v) ≤ ε}. Then, objects can
be segmented into three groups: if Nε(w) contains at least
MinPts objects, then the object w is a core object; if object
w has fewer than MinPts objects in its ε-neighborhood, but
it is in the ε-neighborhood of a core object, it is called a
border object; and if the object is neither a core object nor
a border object, it is categorized as a noise object. An object
v is called directly density-reachable from an object w w.r.t.
ε and MinPts if w is a core object and v ∈ Nε(w). An object
v is called density-reachable from w w.r.t. ε and MinPts if
there is a chain of objects o1, o2, . . . , on with o1 = w and
on = v, and oi + 1 is directly reachable from oi. Two objects
v and w are called density-connected if there is an object o
such that both v and w are density-reachable from o. Then,
a cluster satisfies two properties: (i) all objects within the

cluster are mutually density-connected and (ii) if an object
is density-reachable from any object of the cluster, it should
be included into the cluster. To find a cluster, DBSCAN starts
with an object o that has not been visited. If o is a core object,
then it collects all objects that are density-reachable from o
and forms a cluster. Otherwise, the object is considered as
noise. As opposed to K-means, DBSCAN is less sensitive
to outliers and better handles data with arbitrary geometric
shapes. However, it cannot handle data with varying density
and is sensitive to parameters settings.
Hierarchical clustering [8] seeks to build a hierarchy of

clusters based on pairwise dissimilarities among objects.
Strategies for hierarchical clustering generally fall into
two categories: agglomerative (bottom up) and divisive
(top down). Agglomerative strategies start at the bottom
with each object in its own cluster. It recursively merges
pairs of clusters with smallest inter-cluster dissimilarity
as one moves up the hierarchy. Divisive strategies start at
the top with all objects in one cluster. It moves down the
hierarchy by recursively splitting an existing cluster into
two new clusters with the largest inter-cluster dissimilarity.
Let W and V represent two clusters of objects. The
dissimilarity of W and V is computed from the pairwise
dissimilarities dwv, where one member of the pair w is
from W and the other one v is from V. Average linkage:
dAL (W,V) = 1

NWNV

∑
v∈V

∑
w∈W dwv, complete linkage:

dCL (W,V) = max
v∈V,w∈W dwv, and single linkage: dSL (W,V) =

min
v∈V,w∈W dwv are commonly used to measure the inter-cluster

dissimilarity. It is up to the user to decide when (i.e., at
which level) to stop to obtain a “natural” result: objects
within each cluster are sufficiently more similar to each other
than to objects assigned to different clusters. The resulting
hierarchical structure can be graphically represented as a
dendrogram.
Affinity propagation (AP) [60] is based on neighbor

information propagation. It finds the optimal set of class
representative objects (i.e., exemplars), which make the sum
of the similarities of all objects to their nearest exemplars
as large as possible. For objects i, j, and k, a similarity
matrix s is defined such that s(i, j) > s(i, k), if object i
is more similar to object j than to k. A commonly used
function is s(i, j) = −‖xi − xj‖2. The AP algorithm
proceeds by letting all objects send messages to all other
objects to determine exemplars with two matrices: (1) a
“responsibility matrix” with element r(i, j) that quantifies
how well-suited object j is to be an exemplar to object i and
(2) an “availabilitymatrix” with element a(i, j) that represents
how appropriate it would be for object i to choose object j
as its exemplar. As such, responsibility messages are sent
around as: r (i, k) ← s (i, k) − max

k1 �=k
{a (i, k1) + s (i, k1)}.

The availability messages are updated as: a (i, k) ←
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min

{
0, r (k, k) + ∑

i1 �=i&i1 �=k max {0, r (i1, k)}
}

for i �= k

and a (k, k) ← ∑
i1 �=k max {0, r (i1, k)}. The algorithm

iterates until cluster assignments are not changed. The
final exemplars are chosen as those with r(i, i) + a(i, i) > 0.
Although exemplars are similar to “centroids” generated by
the K-means, the AP algorithm does not require the number
of clusters to be predefined.

A self-organizing map (SOM) [61] is a type of unsuper-
vised ANN model that represents high-dimensional input
data in a low-dimensional map, preserves the topological re-
lationship of the original data, and organizes the data accord-
ing to inherent structures. Given an input x= (x1, x2, . . . , xd),
the distance to each neuron in the SOM is calculated as
di = ‖wi − x‖, wherewi = (wi1,wi2, . . . ,wid) is the weight of
the ith neuron in the SOM (in totalM neurons). The resulting
distance vector d= (d1, d2, . . . , dM) is obtained to determine
the best matching neuron (BMN) by finding the smallest di.
Then, di is assigned as 1 and all other elements in d are
set as 0. Further, the weights of the BMN and its neighbors
are updated toward the input according to the rule of the
Kohonen update as: wt+1

i ← wti + ht · (xt − wti
)
, where t

is the iteration index and ht is a neighborhood function to
characterize the closeness of the BMN to other neurons in the
map. In this way, a SOM arranges high-dimensional input in
a two-dimensional map such that similar inputs are mapped
onto neighboring regions. Thus, similar patterns of the input
data are preserved. Outputs of a SOM can be characterized
using a U-matrix or a Hits Map to visualize the clustering
results. Conventional SOMs are designed for unsupervised
learning, whereas supervised SOMs are also investigated in
the literature that integrate label information as an additional
element in the input vector x during the training phase [62].

38.3.3 Software

Several DM software packages and libraries are available:

• SAS Enterprise Miner (www.sas.com/technologies/
analytics/datamining/miner/)

• SPSS Clementine (www.spss.com/clementine/)
• XLMiner in Excel (www.xlminer.net)
• Ghostminer (www.fqspl.com.pl/ghostminer/)
• Quadstone (www.quadstone.com/)
• Insightful Miner (www.splus.com/products/iminer/)
• Statsmodels (www.statsmodels.org)
• SciKit-Learn (www.scikit-learn.org)
• Keras (www.keras.io)
• Tensorflow (www.tensorflow.org)
• Deep Learning Toolbox (www.mathworks.com/solutions/

deep-learning/)
• Darknet (www.pjreddie.com/darknet/)

Haughton et al. [63] present a review of the first five listed
above. The SAS and SPSS packages have the most complete
set of KDD/DM tools (data handling, DM modeling, and
graphics), while Quadstone is the most limited. Insightful
Miner was developed by S+ [www.splus.com], but does not
require knowledge of the S+ language, which is only recom-
mended for users that are familiar with statistical modeling.
For statisticians, the advantage is that Insightful Miner can
be integrated with more sophisticated DMmethods available
with S+, such as flexible and mixture discriminant analysis.
All six packages include trees and clustering, and all except
Quadstone include ANN modeling. The SAS, SPSS, and
XLMiner packages include discriminant analysis and associ-
ation rules. Ghostminer is the only one that offers SVM tools.

SAS, SPSS, and Quadstone are the most expensive (over
$ 40 000) while XLMiner is a good deal for the price (under $
2 000). The disadvantage of XLMiner is that it cannot handle
very large datasets. Each package has certain specializations,
and potential users must carefully investigate these choices
to find the package that best fits their KDD/DM needs.
Below we describe some other software options for the DM
modeling methods presented.

GLM or linear models are the simplest of DM tools and
most statistical software can fit them, such as SAS, SPSS, S+,
and Statistica [www.statsoftinc.com/]. However, it should be
noted that Quadstone only offers a regression tool via score-
cards, which is not the same as statistical linearmodels. GAM
requires access to more sophisticated statistical software,
such as S+.

Software for CART, MART, and MARS is available from
Salford Systems [www.salford-systems.com]. SAS Enter-
prise Miner includes CHAID, CART, and the machine learn-
ing program C4.5 [www.rulequest.com], which uses clas-
sifiers to generate decision trees and if–then rules. SPSS
Clementine and Insightful Miner also include CART, but
Ghostminer and XLMiner utilize different variants of de-
cision trees. QUEST [www.stat.wisc.edu/loh/quest.html] is
available in SPSS’s AnswerTree software and Statistica.

Python provides many open-source libraries for machine
learning and deep learning. Statsmodels is a library that
enables its users to conduct data exploration via the use
of various methods of estimation of statistical models and
performing statistical assertions and analysis. Scikits are
additional packages of SciPy Stack designed for specific
functionalities like image processing and machine learning
facilitation. Keras and Tensorflow are two most prominent
and convenient open-source libraries for deep learning. Keras
builds neural networks at a high level of the interface. Ten-
sorflow is developed by Google and sharpened for machine
learning. It was designed to meet the high-demand require-
ments of Google environment for training neural networks
and is a successor of DistBelief, a machine learning system
based on neural networks.

http://www.sas.com/technologies/analytics/datamining/miner/
http://www.spss.com/clementine/
http://www.xlminer.net
http://www.fqspl.com.pl/ghostminer/
http://www.quadstone.com/
http://www.splus.com/products/iminer/
http://www.statsmodels.org
http://www.scikit-learn.org
http://www.keras.io
http://www.tensorflow.org
http://www.mathworks.com/solutions/deep-learning/
http://www.pjreddie.com/darknet/
http://www.splus.com
http://www.statsoftinc.com/
http://www.salford-systems.com
http://www.rulequest.com
http://www.stat.wisc.edu/loh/quest.html
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Other softwares for ANN include Matlab’s [http://www.
mathworks.com] Neural Network Toolbox, Matlab’s Deep
Learning Toolbox, and Darknet [http://www.pjreddie.com/
darknet/]. The Neural Network Toolbox provides a complete
package for ANN modeling. The Deep Learning Toolbox
supports CNN networks for classification and regression on
image data. The Darknet is an open-source deep learning
framework written in C and CUDA, which is fast, easy to
install, and provides state-of-art methods for real-time object
detection.

38.4 DM Research and Applications

Many industrial and business applications require modeling
and monitoring processes with real-time data of different
types: real values, categorical, and even text and image.
DM is an effective tool for extracting process knowledge
and discovering data patterns to provide a control aid for
these processes. Advanced DM research involves complex
system modeling of heterogeneous objects, where adaptive
algorithms are necessary to capture dynamic system behav-
ior. Various data mining algorithms [63], such as logistic
regression, support vector machines, convolutional neural
networks, decision trees, and combinations of these, have
been widely adopted in practical applications. Some appli-
cation examples include activity monitoring, manufacturing
process modeling, object detection, health assessment, fault
diagnosis, and remaining useful life prediction. DM algo-
rithms serve as solutions to these tasks.

38.4.1 Activity Monitoring

One important DM application is the development of an
effective data modeling and monitoring system for under-
standing customer profiles and detecting fraudulent behavior.
This is generally referred to as activity monitoring for inter-
esting events requiring action [65]. Other activity monitoring
examples include credit card or insurance fraud detection,
computer intrusion detection, some forms of fault detection,
network performance monitoring, and news story monitor-
ing.

Although activity monitoring has only recently received
attention in the information industries, solutions to similar
problems were developed long ago in the manufacturing in-
dustries, under the moniker statistical process control (SPC).
SPC techniques have been used routinely for online process
control and monitoring to achieve process stability and to
improve process capability through variation reduction. In
general, all processes are subject to some natural variability
regardless of their state. This natural variability is usually

small and unavoidable and is referred to as common cause
variation. At the same time, processes may be subject to
other variability caused by improper machine adjustment,
operator errors, or low-quality raw material. This variability
is usually large, but avoidable, and is referred to as special
cause variation. The basic objective of SPC is to detect
the occurrence of special cause variation (or process shifts)
quickly, so that the process can be investigated and corrective
action may be taken before quality deteriorates and defective
units are produced. The main ideas and methods of SPC
were developed in the 1920s by Walter Shewhart of Bell
Telephone Laboratories and have had tremendous success in
manufacturing applications [66]. Montgomery and Woodall
[67] provide a comprehensive panel discussion on SPC, and
multivariate methods are reviewed by Hayter and Tsui [68]
andMason et al. [69].

Although the principle of SPC can be applied to ser-
vice industries, such as business process monitoring, fewer
applications exist for two basic reasons that Montgomery
identified. First, the system that needs to be monitored and
improved is obvious in manufacturing applications, while it
is often difficult to define and observe in service industries.
Second, even if the system can be clearly specified, most
nonmanufacturing operations do not have natural measure-
ment systems that reflect the performance of the system.
However, these obstacles no longer exist, due to the many
natural and advanced measurement systems that have been
developed. In the telecommunications industry, for example,
advanced software and hardware technologies make it pos-
sible to record and process huge amounts of daily data in
business transactions and service activities. These databases
contain potentially useful information to the company that
may not be discovered without knowledge extraction or DM
tools.

While SPC ideas can be applied to business data, SPC
methods are not directly applicable. Existing SPC theories
are based on small- or medium-sized samples, and the basic
hypothesis testing approach is intended to detect only simple
shifts in a process mean or variance. Recently, Jiang et al.
[70] successfully generalized the SPC framework to model
and track thousands of diversified customer behaviors in the
telecommunication industry. The challenge is to develop an
integrated strategy to monitor the performance of an entire
multistage system and to develop effective and efficient
techniques for detecting the systematic changes that require
action.

A dynamic business process can be described by the
dynamic linear models introduced byWest [71],

Observation equation : Xt = Atθt + �t,
System evolution equation : θt = Btθt−1 + �t,
Initial information : π (S0) ,

http://www.mathworks.com
http://www.pjreddie.com/darknet/
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whereAt andBt represent observation and state transitionma-
trices, respectively, and �t and �t represent observation and
system transition errors, respectively. Based on the dynamic
system model, a model-based process monitoring and root-
cause identification method can be developed. Monitoring
and diagnosis include fault pattern generation and feature
extraction, isolation of the critical processes, and root-cause
identification. Jiang et al. [70] utilize this for individual
customer prediction and monitoring. In general, individual
modeling is computationally intractable and cluster models
should be developed with mixture distributions [72].

One particularly competitive industry is telecommunica-
tions. Since divestiture and government deregulation, various
telephone services, such as cellular, local and long distance,
domestic, and commercial, have become battle grounds for
telecommunication service providers. Because of the data
and information-oriented nature of the industry, DMmethods
for knowledge extraction are critical. To remain competitive,
it is important for companies to develop business planning
systems that help managers make good decisions. In partic-
ular, these systems will allow sales and marketing people
to establish successful customer loyalty programs for churn
prevention and to develop fraud detection modules for reduc-
ing revenue loss through market segmentation and customer
profiling.

A major task in this research is to develop and implement
DM tools within the business planning system. The objec-
tives are to provide guidance for targeting business growth,
to forecast year-end usage volume and revenue growth, and
to value risks associated with the business plan periodically.
Telecommunication business services include voice and non-
voice services, which can be further categorized to include
domestic, local, international, products, toll-free calls, and
calling cards. For usage forecasting, a minutes growth model
is utilized to forecast domestic voice usage. For revenue
forecasting, the average revenue per minute on a log scale is
used as a performance measure and is forecasted by a double
exponential smoothing growth function. A structural model
is designed to decompose the business growth process into
three major subprocesses: add, disconnect, and base. To im-
prove explanatory power, the revenue unit is further divided
into different customer groups. To compute confidence and
prediction intervals, bootstrapping and simulation methods
are used.

To understand the day effect and seasonal effect, the
concept of bill-month equivalent business days (EBD) is
defined and estimated. To estimate EBD, the factor charac-
teristics of holidays (non-EBD) are identified and eliminated
and the day effect is estimated. For seasonality, the US
Bureau of the Census X-11 seasonal adjustment procedure
is used.

38.4.2 Mahalanobis–Taguchi System

Genichi Taguchi is best known for his work on robust
design and design of experiments. The Taguchi robust design
methods have generated a considerable amount of discussion
and controversy and are widely used in manufacturing [73–
76]. The general consensus among statisticians seems to be
that, while many of Taguchi’s overall ideas on experimental
design are very important and influential, the techniques he
proposed are not necessarily the most effective statistical
methods. Nevertheless, Taguchi has made significant contri-
butions in the area of quality control and quality engineering.
For DM, Taguchi has recently popularized theMahalanobis–
Taguchi System (MTS), a new set of tools for diagnosis,
classification, and variable selection. The method is based
on a Mahalanobis distance scale that is utilized to measure
the level of abnormality in abnormal items as compared
to a group of normal items. First, it must be demonstrated
that a Mahalanobis distance measure based on all available
variables is able to separate the abnormal from the normal
items. Should this be successfully achieved, orthogonal ar-
rays and signal-to-noise ratios are used to select an optimal
combination of variables for calculating the Mahalanobis
distances.

TheMTSmethod has been claimed to be very powerful for
solving a wide range of problems, including manufacturing
inspection and sensing, medical diagnosis, face and voice
recognition, weather forecasting, credit scoring, fire detec-
tion, earthquake forecasting, and university admissions. Two
recent books have been published on the MTS method by
Taguchi et al. [77] and Taguchi and Jugulum [78]. Many suc-
cessful case studies in MTS have been reported in engineer-
ing and science applications in many large companies, such
as Nissan Motor Co., Mitsubishi Space Software Co., Xerox,
Delphi Automotive Systems, ITT Industries, Ford Motor
Company, Fuji Photo Film Company, and others. While the
method is getting a lot of attention in many industries, very
little research [79] has been conducted to investigate how and
when the method is appropriate.

38.4.3 Manufacturing Process Modeling

One area of DM research in manufacturing industries is qual-
ity and productivity improvement through DM and knowl-
edge discovery. Manufacturing systems nowadays are often
very complicated and involve many manufacturing process
stages where hundreds or thousands of in-process measure-
ments are taken to indicate or initiate process control of the
system. For example, a modern semiconductor manufactur-
ing process typically consists of over 300 steps, and in each
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step multiple pieces of equipment are used to process the
wafer. Inappropriate understanding of interactions among in-
process variables will create inefficiencies at all phases of
manufacturing, leading to long product/process realization
cycle times and long development times, resulting in exces-
sive system costs.

Current approaches to DM in electronics manufacturing
include neural networks, decision trees, Bayesian models,
and rough set theory [80, 81]. Each of these approaches
carries certain advantages and disadvantages. Decision trees,
for instance, produce intelligible rules and hence are very
appropriate for generating process control or design of ex-
periments strategies. They are, however, generally prone to
outlier and imperfect data influences. Neural networks, on
the other hand, are robust against data abnormalities but do
not produce readily intelligible knowledge. These methods
also differ in their ability to handle high-dimensional data,
to discover arbitrarily shaped clusters [57] and to provide a
basis for intuitive visualization [82]. They can also be sensi-
tive to training and model building parameters [59]. Finally,
the existing approaches do not take into consideration the
localization of process parameters. The patterns or clusters
identified by existing approaches may include parameters
from a diverse set of components in the system. Therefore,
a combination of methods that complement each other to
provide a complete set of desirable features is necessary.

It is crucial to understand process structure and yield
components in manufacturing, so that problem localization
can permit reduced production costs. For example, semicon-
ductor manufacturing practice shows that over 70% of all
fatal detects and close to 90% of yield excursions are caused
by problems related to process equipment [83]. Systematic
defects can be attributed to many categories that are generally
associated with technologies and combinations of different
process operations. To implement DM methods successfully
for knowledge discovery, some future research for manufac-
turing process control must include yield modeling, defect
modeling, and variation propagation.

Yield Modeling
In electronics manufacturing, the ANSI standards [84] and
practice gene rally assume that the number of defects on
an electronics product follows a Poisson distribution with
mean λ. The Poisson random variable is an approximation
of the sum of independent Bernoulli trials, but defects on
different components may be correlated since process yield
critically depends on product groups, process steps, and
types of defects [85]. Unlike traditional defect models, an
appropriate logit model can be developed as follows. Let the
number of defects of category X on an electronics product be

UX =
∑

YX

and

logit [E (YX)] = α0
X + αOX · OX

+ αCX · CX + αOCX · OX · CX,

where logit(z) = log[z/(1 − z)] is the link function for
Bernoulli distributions, and YX is a Bernoulli random variable
representing a defect from defect category X. The default
logit of the failure probability is αOX , and αOX and αCX are the
main effects of operations (OX) and components (CX). Since
the YXs are correlated, this model will provide more detailed
information about defects.

Multivariate Defect Modeling
Since different types of defects may be caused by the same
operations, multivariate Poisson models are necessary to
account for correlations among different types of defects.
The trivariate reduction method suggests an additive Poisson
model for the vector of Poisson countsU= (U1,U2,· · · ,Uk)′,

U = AV,

whereA is amatrix of zeros and ones, andV= (v1, v2, . . . , vp)
′

consists of independent Poisson variables vi. The variance–
covariance matrix takes the form Var(U)= A�A′ = Φ + νν ′,
where Φ = diag(μi) is a diagonal matrix with the mean of
the individual series, and ν is the common covariance term.
Note that the vi are essentially latent variables, and a factor
analysis model can be developed for analyzing multivariate
discrete Poisson variables such that

log [E(U)] = μ + L · F,

where U is the vector of defects, L is the matrix of factor
loadings, andF contains common factors representing effects
of specific operations. By using factor analysis, it is possible
to relate product defects to the associated packages and
operations.

Multistage Variation Propagation
Inspection tests in an assembly line usually have functional
overlap, and defects from successive inspection stations ex-
hibit strong correlations. Modeling serially correlated de-
fect counts is an important task for defect localization and
yield prediction. Poisson regression models, such as the
generalized event-count method [86] and its alternatives, can
be utilized to account for serial correlations of defects in
different inspection stations. Factor analysis methods based
on hidden Markov models [87] can also be constructed to
investigate how variations are propagated through assembly
lines.
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38.4.4 Object Detection

One area of DM image research is object detection, a
computer technology related to computer vision and image
processing that deals with detecting instances of semantic
objects of a certain class in digital images and videos. An
object-class detection is to localize and extract information
of all objects in an image that belongs to a given class. Well-
studied domains of object detection include face detection
and pedestrian detection.

Face detection, as a specific case of object-class detec-
tion, focuses on the detection of frontal human faces. It is
analogous to image detection in which the image of a person
is matched bit by bit. Image matches with the image stores
in database. Any facial feature changes in the database will
invalidate the matching process. The main difficulties in face
detection includes severe occlusion and variation of head
poses.

Pedestrian detection provides fundamental information
for semantic understanding of the video footages and consid-
ered an essential and significant in intelligent video surveil-
lance system. It has an obvious extension to automotive
applications due to enhance road safety and is offered as
an advanced driver assistant system option by many car
manufacturers in 2017. The major challenges of pedestrian
detection arise from different possible posture, various ap-
pearance styles, the presence of occluding accessories, and
frequent occlusions among pedestrians.

Existing methods for object detection generally fall into
machine learning approaches and deep learning approaches.
For machine learning approaches, it first extracts handcrafted
features such as edges, corners, colors, etc. of the region of
interest cropped by sliding window, then uses classifiers such
as SVM to do the classification. On the other hand, deep
learning approaches use CNN to extract the image features
and thus able to do end-to-end object detection without
specifically defining features. Ross et al. [88] prompted re-
gions with CNN (R-CNN) to achieve dramatic improvements
in accuracy of objects detection, which can be seen as a major
breakthrough in the field of object detection. Subsequently,
a series of R-CNN-based detection methods such as Fast R-
CNN [89] and Faster R-CNN [90] were proposed. Those are
classic two-stage object detection approaches that usually
include a region proposal localization stage and a network
classification stage. Then single shot detection methods,
such as single shot detector (SSD) [91], RetinaNet [92],
you only look once (YOLO) [93–95], etc., are developed.
They skip the region proposal stage and run detection di-
rectly over a dense sampling of possible locations through
a single CNN. The “one-stage” detection methods treat the
detection as a single regression problem and are faster and
simpler.

38.4.5 Surveillance of Public Health Systems

Public health surveillance is another important DM applica-
tion. The objective of public health surveillance is to examine
health trends, detect changes in disease incidence and death
rates, and to plan, implement, and evaluate public health prac-
tice by systematically collecting, analyzing, and interpreting
public health data (chronic or infectious diseases). Under-
standing challenges to nations’ public health systems and
how those challenges shift over time is of crucial importance
for policymakers to establish effective strategies. In public
health surveillance, the volume and velocity of data streams
have dramatically grown in recent decades. In spite of the
growing data volume, advances in information technology
have enabled collection of cause-of-death data in a more
timely manner.

The availability of public health big data provides a com-
prehensive picture of health system status in terms of the
causes of significant population-wide changes, the underly-
ing risks, the changes in the pattern of health-related losses,
etc. Numerous efforts have been made to monitor and evalu-
ate the health of populations by taking advantage of public
health big data and data mining techniques. For example,
Google flu trend (GFT) is a data analytics model developed
by Google for predicting weekly reported influenza-like ill-
ness (ILI) rates using instant query data [96]. However, as
reported in Refs. [96, 97], GFT failed to provide accurate
predictions, and predicted more than double the actual rate
of doctor visits for ILI reported by the Centers for Disease
Control and Prevention during the 2012–2013 season. The
model’s failure has led to a large number of research pa-
pers aiming to improve its predictive accuracy [98–100].
One representative method was ARGO, proposed in Ref.
[98], which not only incorporated seasonality in historical
ILI rates, but also captured changes in the public’s online
searching behaviors over time.

38.5 Concluding Remarks

While DM and KDD methods are gaining recognition and
have become very popular in many companies and enter-
prises, the success of these methods is still somewhat limited.
Below, we discuss a few obstacles.

First, the success of DM depends on a close collaboration
of subject-matter experts and data modelers. In practice, it is
often easy to identify the right subject-matter expert, but diffi-
cult to find the qualified datamodeler.While the datamodeler
must be knowledgeable and familiar with DM methods, it is
more important to be able to formulate real problems such
that the existingmethods can be applied. In reality, traditional
academic training mainly focuses on knowledge of modeling
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algorithms and lacks training in problem formulation and
interpretation of results. Consequently, many modelers are
very efficient in fitting models and algorithms to data, but
have a hard time determining when and why they should use
certain algorithms. Similarly, the existing commercial DM
software systems include many sophisticated algorithms, but
there is a lack of guidance on which algorithms to use.

Second, implementation of DM is difficult to apply effec-
tively across an industry. Although it is clear that extracting
hidden knowledge and trends across an industry would be
useful and beneficial to all companies in the industry, it
is typically impossible to integrate the detailed data from
competing companies due to confidentiality and proprietary
issues. Currently, the industry practice is that each company
will integrate their own detailed data with the more general,
aggregated industry-wide data for knowledge extraction. It is
obvious that this approach will be significantly less effective
than the approach of integrating the detailed data from all
competing companies. It is expected that, if these obstacles
can be overcome, the impact of the DM and KDD methods
will be much more prominent in industrial and commercial
applications.
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